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1. Introduction 

Forests are the important land resource, provide food and shelter to animal species, 

provide watershed protection, avert soil erosion, improve the quality of the environment and 

mitigate climate change (Sabogal et al., 2015). As per the recent report by FAO and UNEP 

(2020), forests form 4.06 billion hectares (31 percent) of the global land area, distributed 

unequally around the world, with  large variations in their structure and function. Forests are 

variably sensitive to environmental factors due to their distribution along dissimilar and complex 

topographical landscapes with the wide variations in species composition, environmental 

conditions, and availability of resources (Cantlon, 1953; Pook and Moore, (1966); Bale and 

Charley, 1994; Xu et al., 2020; Murphy et al., 2021). Despite the evidences of the effect of 

topography on forest systems at landscape level, only few reports are available regarding the 

impact of varied topography on physiology and tree growth within catchment areas of the 

mountain ecosystem. The topographic influence of topoclimate and catchment hydrology may 

certainly play a significant role in shaping forest feedback to future climate conditions. 

Topoclimates construct habitats that may either buffer against unfavorable geographic climate 

circumstances (microrefugia) or intensify climate stress even in the presence of suitable 

conditions. Particularly, due to highly uneven topography and strong elevation gradient in the 

mountain ecosystem, the potential variations in soil moisture availability and other 

physiochemical characteristics timing, and form of precipitation, shape the structure and function 

of the forest (Pelletier et al., 2018; Murphy et al., 2021).  

Temperature and moisture conditions are well known to change across the topographic 

positions. As a result, sites with varying topographical attributes endorse a diverse range of forest 
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types (Wang et al., 2019). The Impact of inter-seasonal variability of precipitation, air 

temperature, humidity, and soil moisture on forest productivity, is associated with the 

topographic variability (for instance hill-slope position, slope, and aspect), results in expected 

differences in the incoming solar radiation (Rosenberg et al., 1983; Desta et al., 2004; Bennie et 

al., 2008; Pelletier et al., 2018; Murphy et al., 2021). Stephenson, (1990); Hinckley et al., (2014) 

and Yetemen et al., (2015) postulate, in the northern hemisphere, equator facing, southern aspect 

experience rapid and early snow melt along with relatively faster and early soil drying in the 

growing season than pole facing, north aspect. This is due to more directly striking incoming 

solar radiation in the southern aspect than the north one; such that, it enhances the evaporation 

rates in the southern aspect, hence, causes relatively more water stress conditions compared to 

northern aspect. Similarly, Desta et al., (2004), Gutiérrez‐Jurado et al., (2006) and Geroy et al., 

(2011) observed  the impact of varying  incoming solar radiation on soil water retention and 

storage in varying slope aspects. Further, regional and microclimatic dissimilarities also cause 

variability in the incoming solar radiations, which in turn result in variations in composition of 

forest community, species distribution along elevation gradient and forest productivity 

(Whittaker and Niering, 1965; Coblentz and Riitters, 2004; Måren et al., 2015; Murphy et al., 

2020). Murphy et al., (2020) observed and indicated that solely abiotic factors are not 

responsible for the aspect-based differences in the soil water availability, but the complex 

interactions between the biotic and abiotic factors together with canopy and geologic 

construction also influence availability of soil moisture. Furthermore, he postulated that seasonal 

shift in sun angle, air temperature, soil moisture and tree species influence the physiological 

performance of the plants, mediated by the differences in slope and aspect.  
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Topographic positions significantly influence the ecophysiological performances. 

Variation in topography offers microrefugia which can lead the environment alteration. As a 

result, topographic positions can affect the ecophysiological performances along with the other 

microclimatic variables, such as light, CO2 concentration, water availability, temperature, 

available nutrients (Lüttge, 2008; Santanoo et al., 2019; Vincent, 2020). In addition, topographic 

heterogeneity causes irregularities in the photoperiod. Variation in photoperiod (day length) 

regulates the seasonal as well as microclimatic variations in environmental factors causing 

unevenness in physiological activities of the plants like leaf gas exchange and plant water 

relations (Keeling et al., 1996; Bauerle, 2012; Way and Montgomery, 2015; Barnard et al., 2017; 

Blackman, 2017; Huang et al., 2020), which in turn influence the growth and photosynthetic 

processes (Goulden et al., 1996; Randerson et al., 1999; Angert et al., 2005; Piao et al., 2008; 

Matthews et al., 2017).  Therefore, topography is an important environmental factor which 

regulates the plant ecophysiological traits (leaf gas exchange and plant water relation).  

Gas Exchange is a one of key physiological processes of a leaf that indicates the strength 

and growth patterns of the plant (Santanoo et al., 2019; Tankari et al., 2019). Leaf gas exchange 

parameters are highly variable set of plant ecophysiological traits that change diurnally and 

seasonally (Garkoti et al., 2000; Zobel et al., 2001; Garkoti et al., 2002; Garkoti et al., 2003; 

Ishida et al., 2010; Matthews et al., 2017; Santanoo et al., 2019 ), predominantly influenced with 

the several environmental factors such as photo period, intensity and quality of light, air 

temperature, relative humidity, soil water and nutrient availability (Lüttge, 2008; Urban et al., 

2017; Santanoo et al., 2019; Vincent, 2020). These changes in environmental factors rapidly 

alters the rate of CO2 uptake as well as other physiological (Matthews et al., 2017; Aspinwall et 
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al., 2021) and phenological traits (Wang et al., 2016; Wadgymar et al., 2018; Lee et al., 2020) of 

the plant.  

Plant physiological responses are interlinked and contribute to the plant’s survival and 

productivity. For instance, stomata react to environmental cues by controlling the opening and 

closer of guard cells, which has two key functions; first is to allow the uptake of carbon dioxide; 

second to limit the loss of water due to evapotranspiration; by which it regulates the rate of 

photosynthesis and rate of transpiration simultaneously. Stomatal conductivity decreases to slow 

down water loss from the leaves during drought conditions (Slatyer, 1967) and frost draught 

stress (Kume and Tanaka, 1996; Garkoti et al.,2003; Poudyal et al., 2004; Cavender-Bares, 2007; 

Urban et al., 2017). This also responds negatively against rate of photosynthesis (Knapp and 

Smith, 1987; Tinoco-Ojanguren and Pearcy, 1993; Lawson et al., 2010; Lawson and Blatt, 2014; 

Arve et al., 2011) similarly.  

There are several microclimatic factors that influence the functioning of stomata. Light 

and water are the predominantly regulating factor among all. When the light intensity is higher, 

the rate of photosynthesis rises to absorb more CO2 and dissipate heat in response. When the 

luminosity is higher than the threshold, it causes overheating of the system, called non-

photochemical quenching (NPQ) and subsequent exhaustion of the photosynthetic machinery 

(Miralles-Crespo et al., 2011). Such quick alterations in environmental factors result in diurnal 

variations in the ecophysiology of plants. Meanwhile it is important to know that the intensity of 

light, required to open stomata is very low as compared to the intensity required to start 

photosynthesis. The maximum stomatal conductance and photosynthesis observed to be highest 
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at mid-day when luminosity is highest and plants assimilate several folds higher CO2 than 

released during respiration (El-Sharkawy & Hesketh 1965; El-Sharkawy et al., 1968).      

For both broadleaf and conifers, Brodribb (1996) reported lower stomatal conductance 

for low water potential or water stress conditions. This limits the uptake of CO2 from the 

atmosphere and declines the magnitude of the ratio of intercellular CO2 concentration and 

atmospheric CO2 concentration (Ci/Ca). But this scenario changes mysteriously when the 

magnitude of Ci/Ca increases with the continuation of such drier condition and stomatal 

conductivity approaches to zero. This may be due to respiration increases beyond the 

compensation point on the stomatal closer. Stomata, subsequently photosynthetic machinery, 

respond quickly to the changing light environment (Knapp and Smith, 1987; Pearcy, 1990; 

Barradas et al., 1994; Tinoco-Ojanguren and Pearcy, 1993; Kirschbaum et al., 1998; Lawson et 

al., 2003).  

Plant water potential provides understanding about the equilibrium between availability 

of soil water, the rate of evapotraspiration by the leaf, and the plant’s ability to supply water, 

efficiently to the leaves (Bhaskar and Ackerly, 2006). Water potential responds quickly, 

according to the required changes in plant physiology and phenology to overcome the several 

unfavorable environmental changes by regulating stomatal and other related functions, and 

maintains plant survival so that plant may present optimum productivity (Garkoti et al., 2000; 

Zobel et al., 2001; Garkoti et al., 2002; Garkoti et al., 2003; Paudyal et al., 2004; Bargaliand 

Tewari, 2004; Singh et al., 2006; Tewari et al., 2016; Tewari et al., 2018). Besides the plant 

physiological health, measurement of water potential also provides clear clues of favorability of 

soil abiotic stress. Measurement of pre-dawn water potential indicates the soil water availability 
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and is a useful measure of plant water status (Reich and Hinckley, 1989). During the growing 

season plant shows lower leaf to atmospheric water deficit. Therefore,  measurements of water 

potential for the growing season give substantially higher values (Anfodillo et al., 1998); while 

for several types of stress like drought (Abrams, 1990) and frost stress (Mayr et al., 2006; Urban 

et al., 2017) it gives lower water potential.  

There are many reports available on the effect of topography, seasonality and 

microclimatic variables on leaf gas exchange and plant water relation from different forest 

systems (Pearcy, 1987; Goulden et al., 1996; Grossnickle et al., 2005; Piao et al., 2008; Ishida et 

al., 2010; Bauerle et al., 2012; Matthews et al., 2017; Urban et al., 2017; Santanoo et al., 2019; 

Mendes et al., 2020), Such studies are also available on various oak species (Gazal et al., 2009; 

Wolkerstorfer et al., 2011; Rodríguez-Calcerrada et al., 2012) globally in various mountain 

ecosystems.  

Our knowledge related to variations of ecophysiological traits along the topography at the 

Himalayan Forest ecosystems is still limited. The Himalaya shares one fifth part of the India's 

total geographical area and primarily contributes to forest resource of the country. It is the 

youngest and highest mountain, vary in terms of seasonal, climatic, and ecological behavior to 

other mountain ecosystems of the world (Zobel and Singh, 1997, Singh and Singh, 1987). In fact, 

there are seasonal and climatic variations to a large extent in Himalaya itself due to vast 

topographical complexity and contrast. Because of which, contrasting sub-regions of the 

mountain system respond differently to even slight variation in the climate (Dad et al., 2021). 

Often the same forest ecosystem exhibits significant inter and intra-specific variability in 

environmental factors due to the formation of microclimatic zones in same catchment. Besides 
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this, in a same catchment of a mountain ecosystem of Indian Himalaya, inter-annual climate 

variability has also been reported consistently (Dimri, 2013; Sanwal et  al., 2013; Hamal et al., 

2020; Dad et al., 2021, Gutam et al., 2021). 

Reported studies in Himalaya revealed that the contrasting slope aspects vary in received solar 

radiation (Ghimire et al., 2010; Paudel and Vetaas, 2014). In the Himalaya, south aspect is 

substantially warmer and soil drying is more rapid as a result of more incoming solar radiation 

than other aspects; subsequently governs the differences in forest composition, growth and 

photosynthetic productivity (Måren et al., 2015; Singh, 2018; Singh 2020). Many studies in 

Himalaya reported that north aspect exhibits relatively higher species diversity, forest density, 

growing stock and higher vertical allocation of forest (Måren et al., 2015; Singh 2018; Pandita et 

al., 2019; Singh 2020).  

Limited information is available on the dynamics, growth patterns, and plant physiology of the 

Himalayan species in response to the above discussed microclimatic and seasonal variability.  

In mid and higher elevations of the central Himalayas, oak species (Quercus spp.) are dominant 

vascular plants and form a major part of forest ecosystems (Singh and Singh, 1987; Zobel and 

Singh, 1997, Negi and Negi, 2021). Quercus semecarpifolia Sm., also known as Brown Oak, is a 

multipurpose tree species of ecological significance in the sub-alpine ecosystem in the Indian 

Himalaya, constituting a substantial part of the forests at elevation range between 2800 and 3700 

m a.s.l. (Singh et al., 2021; Zobel and Singh, 1997). Singh et al. (1997) described this late 

successional species as greatest forest forming species in subalpine region of the Indian 

Himalaya.  
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The recent study by Negi and Negi (2021) reveals a significant increase in density of various oak 

species except for Q. semecarpifolia. It has been observed a vulnerable ecological status and 

failure of brown oak in the Himalaya due to huge decline of density and regeneration status 

(Singh et al., 1997; Negi and Rawal, 2017; Negi and Negi, 2021). Consequently, it becomes a 

matter of immediate concern to study the physiological responses of brown oak against several 

environmental changes to understand and implement various required forest management actions 

to conserve this forest-forming treeline species in sub-alpine Himalaya. Overall, our knowledge 

about the influence of topography on ecophysiology of central Himalayan native tree species Q . 

semecarpifolia is still limited.  
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2. Objective  

The main aim of the present study was to understand the effects of topographic 

complexity on Q. semecarpifolia’s eco-physiological responses with seasonal variation in air, 

leaf temperature, photosynthetic photon flux density (PPFD) and moisture availability. To 

address this, we characterized the seasonal variation in leaf water potential and seasonal as well 

as diurnal variation in leaf photosynthesis in Q. semecarpifolia growing on north and south 

facing aspects with varying light environments in a same catchment of Kedarnath valley of the 

Central Himalaya. We hypothesized that the magnitude of plant physiological performance 

mediated by the differences in slope aspect and subsequently by light environment would vary 

with seasonal and diurnal shifts in sun angle, air temperature and soil moisture. We expected 

that, Q. semecarpifolia  would maintain higher rates of leaf photosynthesis under higher light, 

warmer and drier conditions of south facing aspect than the contrasting north facing aspect. 

➢ The specific objectives of our study was to investigate seasonal and diurnal 

changes in CO2 assimilation rates, stomatal conductance and water potential of 

the subalpine evergreen broadleaf tree species, Q. semecarpifolia Sm., under 

varying light environments due to contrasting slope aspect.  

➢  
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3. Material and Methods 

3.1. Site description 

Present study was undertaken in the Chopta Tungnath forest area at elevation range of 2800 to 

2950-m a.s.l. The study sites were located at the border of Rudraprayag and Chamoli districts at 

Chopta in Kedarnath Forest division (Kedarnath Wildlife Sanctuary). The study site is situated at 

30°28'56.2"N latitude 79°12'43.9"E longitude in subalpine forest. 

 

Figure 1 Mean monthly precipitation and temperature in the study area (daily precipitation data (obtained from IMD) for the 
year 2017 to 2020 has been obtained and averaged and monthly average temperature (from January 2011 to March 2021) 
has been obtained from European Copernicus Data Services (ECMWF ERA-5 data).  

 

Climate of the selected study area is subalpine with snow fall from December to February. As 

per the stationed meteorological data by IMD (2017-2021), the study area receives 1525.18 ± 

144.38 mm average annual rainfall(ranges between 1384.9 and 1684.4 mm from 2017-2020) 
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(Fig.1). Maximum rainfall occurs during monsoon (from mid June to late September) (460.03 ± 

40.09 to 143.45 ± 79.86 mm average) (Fig. 1). Month of October to December consistently 

receive minimum values of precipitation (ranges between 24.13 ± 29.53 to 7.33 ± 13.52 mm) 

(Fig. 1). Rainy season accounts for one-third of the annually received rainfall. Mean annual 

relative humidity ranged from 15% to 86% (Gairola et al., 2010, Tewari et al., 2018). In the 

months of December, January and February the region is covered with snow, which sometimes 

extends till end of March. In the year 2019 and 2020 also, such extension of snow fall, till the 

month of March has been seen. January has minimum average day time temperature and 

considered as coldest month (6.92 ± 1.39°C, Fig.1). June is the warmest moth of the year with 

average day time temperature 21.21 ± 0.82°C (Fig. 1). May to September are comparatively 

warmer months in the year. Overall there are three main distinctly visible seasons; the cool-chilly 

winters (mid-November to March), the moderately hot but comparatively drier summer (mid -

April to June); and wet but warm rainy season (July to September). Besides these key seasons, 

pragmatically there are the middle periods interconnecting rainy season with winter, likewise 

winter and summer reported as autumn (October to November) and spring (mid-February to mid-

April). The snow melts duringmid-March to mid-April, resulting in high soil moisture which 

supports regeneration and plant growth (Rai et al., 2010, Tewari et al., 2018). 

There was 18 to 35 percent variation in slope with undulating topography and comparatively 

steeper slopes along with north and south aspects. The soil colour was brown-black and mainly 

podzolic and was usually gravelly. Occurrence of large boulders was common in the area. The 

study site lies in the central axis of the greater Himalaya. Rock type was metamorphic, including 

gneisses, granites and schist, which is also recognized as the central crystalline (Joshi and 

Garkoti, 2021). 
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The study area was dominated by Quercus semecarpifolia, a subalpine broad leaved tree species 

native to the Himalaya, and Abies pindrow, a multiyear coniferous species. Rhododenron 

arboreum was the majorly associated tree species of Q. semecarpifolia and A. pindrow. 

 

Figure 2 Location map of study area (a & b) showing aspects and low light and higher light sub-sites at Chopta, Tungnath. 

3.2. Sampling design and Methodology 

Reconnaissance of the study area has been done before start of the sampling and the two 

representative sites were selected; one in N and one in S aspect of the same catchment of the 



Material and Methods 

 

16 
 

mountain. We selected and tagged five- mature trees of Q. semecarpifolia on each of the both 

selected sites at the N and S aspect of the same catchment for all the ecophysiological trait 

measurements (Fig. 2 (b)).To minimize the age effect, in both the aspects the trees with same 

circumference at breast height (CBH, 80-120 cm) were selected and tagged,.  The S aspect was 

well sun lit aspect with optimum light environment, while N aspect was less light receiving 

aspect with comparatively shorter photo period (day length) than the S (Fig. 2 (a)). Both the sites 

differed significantly on duration and timings of the sunshine. S aspect receives sunshine much 

early in the morning than the N, while N aspect where sunshine reaches late in the morning 

keeps receiving sunshine till sunset.  

3.2.1. Ecophyiological traits measurements 

3.2.1.1. Leaf Gas Exchange measurements 

Leaf gas exchange measurements were performed on cloudless days for each sampling season. 

Total 5-9 fully expanded matured, sun-exposed, terminal canopy leaves were marked and tagged 

in each individual tree out of total 10 permanently tagged individual trees following Choat et al., 

(2006); Ishida et al., (2010) and Murphy et al., (2020).  

Sun light intensity changed diurnally along the sampling seasons (Fig. 2). Diurnal trends of gas 

exchange measurements were recorded during 6am, 8am, 10am, 12pm, 2pm, 4pm and 6pm, by 

using instrument, IRGA (open circuit Infrared Gas Analyzer), Portable Photosynthesis System, 

Li-Cor 6800, Lincoln, NE, USA. Measurements were taken under natural condition of leaf 

temperature (Tleaf °C) and Photosynthetic Photon Flux Density (PPFD, µmol m-2s-1) with 6 cm2 

chamber of red-blue light emitting diodes of IRGA. 

Diurnal leaf gas exchange parameters such as, leaf transpiration rate E (mmol H2O m-2s-1), CO2 

assimilation rate or maximum photosynthetic rate Amax (µmol CO2 m-2s-1), stomatal conductivity 
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gsw (mol H2O m-2s-1) and intercellular CO2 concentration Ci(µmol CO2 m-2s-1) were measured 

for Autumn, Winter, Spring and Summer, representing different leaf phenological stages. Ratio 

of Ci/Ca (intercellular and atmospheric CO2 concentration) was calculated to evaluate stomatal 

acclimation. 

3.2.1.2 Water Potential (ᴪ) measurement 

Leaf predawn and midday water potential (Ψ leaf) was measured  seasonally with a pressure 

chamber (Model 1000, PMS Instrument, Corvallis, OR). Three-Five sun-exposed terminal twigs 

(<15 cm long) were excised from the marked trees, among each ten (5 individual trees at N 

aspect and 5 individual trees at S aspect) tagged trees, and placed in sealed polythene bags before 

measurement of leaf water potential (Ψ leaf). The water potential (Ψ) was measured at predawn 

(Ψpd) at 5.30–6.00 am, and in the midday at 1.00–2.00 pm, (Ψmd) following Garkoti et al., 

(2000); Zobel et al., (2001); Garkoti et al., (2002); Garkoti et al., (2003); Singh et al., (2006) and 

Tewari et al., (2018). 

3.2.2. Soil Moisture 

The soil moisture content was measured as a percentage dry weight with the gravimetric method 

by oven drying of soil till constant weight.  For each season soil samples were taken from 5 

representative locations from each of the both the selected aspects (S and N aspect) from three 

depths (0-10cm; 10-20cm; and 20-30). Immediately soil was kept in zip-lock poly-bags, sealed 

tightly and brought to laboratory for taking fresh weight. Sampleswere oven dried at 70°c till 

constant weightand soil moisture content was calculated following Jackson (1958) and Joshi and 

Garkoti, (2021): 
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𝐬𝐨𝐢𝐥 𝐦𝐨𝐢𝐬𝐭𝐮𝐫𝐞 (%) =
𝒇𝒓𝒆𝒔𝒉𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇𝒔𝒐𝒊𝒍 − 𝒅𝒓𝒚𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇𝒔𝒐𝒊𝒍

𝒅𝒓𝒚𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇𝒔𝒐𝒊𝒍
×  𝟏𝟎𝟎 

 

3.2.3. Chlorophyll estimation 

Chlorophyll content was estimated seasonally. 0.1 gram of 5-8 fresh leaf samples were taken 

(cleaned thoroughly and contaminations were removed) from each individual sample tree for 

Chlorophyll (Chlorophyll a, b andtotal chlorophyll) estimation. Chlorophyll content was 

estimated using dimethylsulfoxide (DMSO), following Hiscox and Israelstam (1979). 

Chlorophyll a and b concentrations were calculated using reading on spectrophotometer 

(Shimadzu UV-1201, Kyoto, Japan) at 665 nm and 645 nm, respectively (Barnes et al., 1992; 

Wellburn 1994). Total chlorophyll was calculated by adding the concentration of Chlorophyll a 

and b. We also calculated chlorophyll a/b ratio to check the brown oak’s strategy and response 

against varying light environment (Niinemets, 2007; Yang et. al., 2016).  

3.2.4. Statistical analysis 

All statistical analysis was performed in programming language R (version 4.0) and MS-Excel 

2007. Significant differences in leaf gas exchange, Water potential, leaf chlorophyll (a, b and 

total chl) content and soil moisture were tested with two way ANOVA (analysis of variance). 

Tukey post hoc analysis was carried out to determine the impact of season and aspect on the 

measured parameters. All the statistical analysis was performed after testing the normality and 

homogeneity of the data with log transformation, if required. All the numerical measurements 

were expressed in mean value ± standard error/standard deviation. All analysis parameters were 

considered significantly different when p< 0.05. 
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4. Results 

4.1. Diurnal and seasonal variations in environmental variables 

We observed a significant difference of illumination in terms of PPFD between the studied 

aspects. N aspect experienced average 85-90% reduction in PPFD than the S aspect (Fig. 3). The 

data recorded for diurnal photosynthetic photon flux density (PPFD) provides a bell shaped and 

left-skewed bell shaped curve with significant difference (at p < 0.05) between the S and the N 

aspect, respectively for all the observed seasons. In the S aspect, the magnitude of PPFD started 

increasing from zero at pre-dawn and reached at its peak at 12 pm to 2 pm (mid-day) with 

maximum values and then continuously dropped sharply to minimum values (near zero) at 

evening 6 pm (Fig. 3). While in the N aspect the PPFD reached peaked at 4 pm then dropped 

sharply to near zero at 6 pm for all the studied seasons (Fig. 3). For both the aspects, recorded 

peak values of PPFD were consistently higher for summer season (1945.76 ± 125.12 µmol m-2s-1 

for S and 142.7 ± 7.27 µmol m-2s-1 for N); but the minimum values observed were recorded in 

autumn (1274.76 ± 79.07 µmol m-2s-1) for S aspect and in winter (43.48 ± 2.69 µmol m-2s-1) for 

N aspect (Fig. 3). Leaf temperature (Tleaf) followed the similar diurnal and seasonal trends with 

PPFD and across the seasons, significantly lower values of Tleaf were observed at N aspect than 

the S aspect (Fig. 8). Across the seasons, 40-50% reduction in Tleaf was observed at N aspect than 

the S. The temperature values were the highest at mid day and the lowest at early morning across 

the seasons and aspects (Fig. 8).      
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Figure 3 Diurnal seasonal variation of photon flux density (PPFD) in µmol m2s-1, of two selected varying light environments 
(two different aspects), S and N. Values are in mean ± sd. 
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4.2. Influence of seasonality and varying light environments on leaf gas exchange 

Forest aspects resulting a significant illumination difference and prolonged exposure of leaves to 

different light intensities resulted in substantially different magnitude of ecophysiological  

parameters of the north and south aspect.  The CO2 assimilation or rate of photosynthesis (Amax; 

µmol CO2 m-2 s-1) was significantly higher (p< 0.05) in summer (9.99) followed by spring (7.43), 

autumn (6.67) and was lowest in the winters (5.68) in well sunlit aspect S (Table 1, Fig. 4).  

Approximately 50% reduction in photosynthetic rate was recorded in the winters than the 

summers in S aspect. Similar reduction between summer (4.09) and winter (2.62) was found in 

the N aspect which received relatively less photosynthetically active radiation (PAR). In N 

aspect, Amax in spring (2.92) was significantly lower than the autumn (3.35) (Table 1, Fig. 4). 

Similar trends were observed in stomatal conductivity gsw (mol H2O m-2 s-2) and were 

significantly (p< 0.05) higher (Table 1, Fig. 6) in summer (0.078) followed by the spring (0.76) > 

autumn (0.75) and winter (0.037) in S aspect. Likewise in N with low light environment gsw was 

significantly (P< 0.05) higher in summers (0.065) followed by spring (0.061), autumn (0.055) 

and winter (0.041). Transpiration rate (E) (mmol H2O m-2 s-2) significantly (p< 0.05) 

differedboth in S and N aspects with values: summer (2.40), spring (2.20), autumn (1.9) and 

winter (0.69) in S aspect, and summer (1.2) and lower in winter (0.67); spring (0.88) and autumn 

(0.74) in N aspect (Fig.5). In both S and N aspects, Ci/Ca was significantly (p< 0.05) the higher 

in winter (0.68 and 0.88, respectively) and lowest in summer (0.52 and 0.82, respectively) (Fig. 

7). But for N aspect, Ci/Ca found significantly (p< 0.05) higher than the S aspect for all the 

studied seasons (Fig. 7).  
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Light 

Environment 
Season Amax 

µmol CO2 m
-2

s
-1

 

E 
 

mmol H2O m-2s-1
 

gsw 
 

mol H2O m-2s -1
 

Ci/Ca Ψpd 

 
MPa 

Ψmd 

MPa 

 
S 

Autumn 5.75 ± 0.54Ac 1.9 ± 0.39Ac 0.075 ± 0.004Ac 0.63 ± 0.06Bb -0.80 ± 0.02 -1.12 ± 0.04 

Winter 3.88 ± 1.19Ad 0.69 ± 0.22Ad 0.037 ± 0.0069Ad 0.68 ± 0.09Ba -0.88 ± 0.02 -1.51 ± 0.02 

Spring 6.84 ± 0.44Ab 2.20 ± 0.12Ab 0.076 ± 0.0057Ab 0.56 ± 0.02Bc -0.60 ± 0.02 -1.14 ± 0.02 

Summer 8.64 ± 0.96Aa 2.40 ± 0.09Aa 0.078 ± 0.0023Aa 0.52 ± 0.01Bd -0.67 ± 0.02 -1.38 ± 0.04 

        

 

N 

Autumn 3.35 ± 0.59Bb 0.74 ± 0.12Bc 0.055 ± 0.012Bd 0.85 ± 0.03Abc -0.72 ± 0.02 -1.07 ± 0.03 

Winter 2.62 ± 0.67Bd 0.67 ± 0.082Bd 0.041 ± 0.011Bb 0.88 ± 0.03Aa -0.94 ± 0.01 -1.33 ± 0.05 

Spring 2.92 ± 0.80Bc 0.88 ± 0.029Bb 0.061 ± 0.011Bc 0.86 ± 0.03Ab -0.54 ± 0.03 -1.02 ± 0.03 

Summer 4.09 ± 1.06Ba 1.2 ± 0.27Ba 0.065 ± 0.008Ba 0.84 ± 0.03Ac -0.56 ± 0.02 -1.18 ± 0.02 

Season  F = 113.520 

p = *** 

F = 216.60 

p = *** 

F = 110.08 

p = *** 

F = 107.07 

p = *** 

F = 1561.61 

 p = *** 

 

Light 

environment 
 F = 126.161 

p = *** 

F = 238.73 

p = *** 

F = 32.27 

p = *** 

F = 820.06 

p = *** 

F = 875.18 

p = *** 

 

Table 1 Seasonal variation in maximum rate of photosynthesis (Amax), rate of transpiration (E), stomatal conductivity (gsw), Ratio of  intercellular CO2 and atmospheric CO2 
(Ci/Ca), leaf water potential at predawn (Ψpd) and at mid-day (Ψpd) among two varying light environments S and N for Q. semecarpifolia is presented in the table. For all 
the shown parameters in the table, the optimum representative values are given. Different small letters given indicate the significant difference under four seasons, and the  

capital letter between the combination of two light environments at p value ≤ 0.05 using Tukey’s HSD post hoc test. The values are in mean ± se of sample from the each 
combination of the treatment (Season-Light environmnts). Results of the variance test (two-way ANOVA) in terms of F value and p value at 95% confidence interval are given 

below the table separately for the combination of the season and light environment.  
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Figure 4 Diurnal seasonal variation in CO2 assimilation rate (rate of photosynthesis) Amax for Q. semecarpifolia among two 
varying light environments, S and N. values are in mean ± sd. 

 

 

Figure 5 Diurnal seasonal variation in Transpiration rate (E) for Q. semecarpifolia among two varying light environments, S 
and N. values are in mean ± sd. 
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Figure 6 Diurnal seasonal variation in Stomatal Conductivity (gsw) for Q. semecarpifolia among two varying light 

environments, S and N. values are in mean ± sd. 

 

4.3. Diurnal variation of leaf gas exchange  

Diurnal Amax (Fig. 4), E (Fig. 5) and gsw (Fig. 6) were highly influenced with the diurnal change 

in PPFD (Fig. 3). In S aspect, all the three parameters gradually increased and reached to 

maximum values at 12 pm during autumn, winter and summer. During winter maximum values 

were recorded at 2 pm. In aspect N, diurnal Amax (Fig. 4), E (Fig. 5) and gsw values were higher 

at 4 pm, for all studied seasons except winter. In general, substantial difference between diurnal 

gas exchange parameters of both the studied aspects for all the observed seasons except winter. 

Diurnally, it was not observed comparatively much significant difference in gas exchange 

parameters(A, E, gsw) between both the studied light environments for winter season (Fig. 4, 5 

and 6, respectively). The Amax at S aspect decreased significantly from peak values at 12 pm to2 
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pm, (peak values of PPFD were also recorded at 12 pm for all studied seasons in S) during spring 

(at 12 pm: 6.48 µmol CO2 m-2s-1; at 2pm: 1.74 µmol CO2 m-2s-1)   and in summer (at 12 pm: 8.64 

µmol CO2 m-2s-1; at 2pm: 4.37 µmol CO2 m-2s-1) (Fig. 4). Similar patterns of decrease were 

found in E (Fig. 5) and gsw (Fig. 6) for the same aspect for spring and summer season. Post mid -

day(4 pm and 6pm) values of Amax were either not significantly different between both the light 

environments, S and N (Fig. 4) in all the studied seasons. There was no significant difference in 

gas exchange parameters (Amax, E and gsw) in S and N aspects during early morning (6 am) and 

evening (6 pm) for all the seasons except E for spring and summer at evening (6 pm). The 

recorded values of E at 6 pm were significantly (p< 0.05) lower for S than the N for spring (0.14 

and 0.55 mmol H2O m-2 s-1 for S and N respectively) and summer (0.15 and 0.74 mmol H2O m-2 

s-1 for S and N, respectively) season. Post mid-day transpiration rate, E was significantly (p< 

0.05) lower for sun lit light aspect S than the low light environment aspect N for all the seasons 

except winter (Fig. 5). Similar trends were recorded in gsw across the seasons except for 6 pm; it 

recorded no significant difference in gsw between S and N at 6 pm (Fig. 6). In winter season all 

the recorded gsw, post 8 am were significantly higher for N than the S, except 6 pm.  

Ci/Ca ratios showed similar diurnal pattern for all the observed seasons, however, diurnally its 

magnitudes were significantly lower (p< 0.05) in aspect S aspect in comparison to the N aspect 

for all the seasons (Fig. 7). Diurnal patterns of Ci/Ca ratios were inverse bell shaped (Fig. 7) and 

inverse to the diurnal patterns of Amax, E and gsw (Fig. 4, 5 and 6, respectively). The ratio of 

Ci/Ca were significantly higher at predawn (≥2), compared to the mid -day (≤1) and post mid-day 

(1.5≥1) (Fig. 7).  Diurnally, lowest ratio of Ci/Ca were observed, when maximum CO2 

assimilation Amax was at its peak and gsw was highest. At pre-dawn, when PPFD (Fig. 3)  
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Figure 7 Diurnal seasonal variation in ratio between intercellular CO2 concentration (Ci) and atmospheric CO2 (Ca) 
concentration (gsw) for Q. semecarpifolia among two varying light environments, S and N. values are in mean ± sd. 

 

 

Figure 8 Diurnal seasonal variation in leaf temperature (Tleaf) for Q. semecarpifolia among two varying light environments, S 

and N. values are in mean ± sd. 
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approached to zero and stomata were still closed with near zero values of stomatal conductivity 

gsw (Fig. 6), the exceptionally higher values of Ci/Ca were recorded (Fig. 7). All the gas 

exchange parameters were observed to be influenced with the diurnal trends of PPFD. 

 

Figure 9 Seasonal variation in plant water potential (Ψ) at predawn (pd) and mid-day (md) for Q. semecarpifolia among two 
varying light environments, W and NE. values are in mean ± se. Different letters indicated a significant dif ference under four 

seasons and two light environments (S and N) at p value ≤ 0.05 using Tukey’s HSD post hoc test.  

 

4.4. Influence of seasonality in varying light environments on water potential 

Across the sites and seasons, plant water potential Ψ (MPa) for brown oak was significantly 

higher during the predawn than mid-day. In S aspect, the highest predawn Ψ (Table 1, Fig. 9) 

was recorded during spring season (-0.60), while the highest mid-day Ψ was found during 

autumn (-1.12). In N aspect, Ψ values during both predawn and midday were highest during 

spring season (-0.54 and -1.02, respectively). In both the aspects, the lowest predawn and midday 
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Soil Depth 

(S ) 

Autumn Winter Spring  Summer 

0 to 10 cm 25.8±1.01 22.3±2.1 30.8±0.50 20.0±1.23 

10 to 20 cm 26.2±0.64 25.5±1.72 25.1±1.24 23.8±0.5 

20 to 30 cm 29.2±1.46 25.9±0.66 27.1±0.9 25.7±1.71 

Soil Depth 

(N) 
Autumn Winter Spring  Summer 

0 to 10 cm 48.9±1.18 40.4±2.56 52.6±1.38 36.1±1.22 

10 to 20 cm 36.7±2.06 37.3±2.01 47.3±1.82 39.9±1.17 

20 to 30 cm 35.3±1.25 40.2±2.52 49.8±0.99 42.0±1.63 

Table 2 Seasonal variation in soil moisture (in %) among two varying light environments, S and N. Values are in mean ± se, n = 5 for each depth per season for each light 

environment. 

 

 -water potential were recorded during winter ( -1.51 and -0.88 in S aspect and(-0.94) and -1.33 in N aspect).  
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Overall, the following trends of plant water potential were observed during the study (Fig. 9):  

Ψ predawn for S aspect was highest for spring, followed  by summer, autumn and lowest for 

winter.  Similarly the trends for N aspect were highest for spring, followed by summer, autumn 

and lowest winter.  Trends of Ψ at midday for S aspect were autumn > spring > summer > 

winter; while for N aspect trends were:  spring>autumn>summer>winter.  

The soil moisture (Table. 2) was significantly higher in the N aspect than the sun lit aspect S. For 

both the studied aspects, spring was holding the highest soil moisture (N: 52.6 ± 1.38; S: 30.8 ± 

0.50) followed by autumn (N: 48.9±1.18; S: 25.8±1.01) and winter (N: 40.4±2.56; S: 22.3±2.1), 

while summers observed lowest relative soil moisture (N: 36.1±1.22; S: 20.0±1.23) (Table. 2).  

 

4.5. Influence of seasonality and varying light environments on Chlorophyll content 

Substantial variations were recorded in leaf chlorophyll content (chlorophyll a, b, total 

chlorophyll and chlorophyll a/b) seasonally as well as with varying light environments (Fig. 10). 

Significantly higher (p< 0.05) chlorophyll content (chlorophyll a, b and total chlorophyll) was 

recorded in summer and the lowest in winter for both the studied aspects (Fig. 10). The observed 

trend of chlorophyll content was as follows: summer>autumn>spring>winter for both the studied 

aspects. The observed chlorophyll (Chlorophyll a, b and total chlorophyll) content was 

significantly (p< 0.05) higher in low light environment (N aspect) in comparison to the sun lit 

environment (S aspect)(Fig. 10). Significant decrease in chlorophyll a/b ratio was recorded in 

low light environment aspect N than the sun lit environment aspect S for all the studied seasons 

(Fig. 10). 
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Figure 10 Seasonal variation in chlorophyll a, b, total chlorophyll and chlorophyll a/b (in mg/g) for Q. semecarpifolia among 
two varying light environments, W and NE. values are in mean ± se. Different letters in chlorophyll a, chlorophyll b and total  

chlorophyll indicated a significant difference under four seasons and two light environments (S and N); for chlorophyll a/b 
the same capital letter represent the same combination and the different small letter indicate significant difference at p 
value ≤ 0.05 using Tukey’s post hoc test. Values are in mean ± se ; n = 5 sample from each combination of the treatment 
(season- light environment). 
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5.DISCUSSION 
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5. Discussion 

5.1. Influence of seasonality and varying light environments on gas exchange 

In the present study spring and summer exhibited maximum photosynthetic rate (Amax), 

transpiration rate (E) and stomatal conductivity (gsw)(Fig. 4, 5 and 6, respectively) due to the 

availability of optimum PPFD (Fig. 3) and optimum temperature (Fig. 8) for the subalpine oak, 

Q. semecapifoila. Freezing winter exhibited lowest Amax, E and gsw (Fig. 4, 5 and 6, 

respectively) due to subzero temperature at night and early morning along with below 15°C 

temperature at mid-day (Fig. 8). This is because; the chilling can disturb all vital constituents of 

photosynthesis including ETR (Electron Transport Reaction), subsequently Carbon reduction 

cycle and gsw (Frank et al., 1973). Paudial at al., (2004) also reported the negative correlation of 

gsw of Q. semecarpifolia with low temperature and explained sensitivity of stomata with 

declined temperature. Moreover, declined leaf temperature decreases evaporative demand of the 

plants, results in altered E (Allen and Ort, 2007; Miralles-Crespo et al., 2011).   

Higher Ci/Ca values (Fig. 7) in the winter indicated the season mediated response of stomatal 

activity. Winter rise in Ci/Ca values (Fig. 7) indicated the reduced activity of stomata in the cold 

temperature season and the higher stomatal activity in optimum temperature, resulted in lower 

values of Ci/Ca in summer. Xu and Baldocchi (2003) also reported the similar seasonal trends of 

the data for Ci/Ca (higher values in winter season). Rundel et al., (2002) elucidated the similar 

negative relationship between Ci/Ca and stomatal activity, along with the negative relationship 

of mid-day water potential with Ci/Ca. Magnitude of Ci/Ca was higher for low light aspect N 

(peak value of PPFD in N aspect was 142.7 ± 7.27; Fig. 3) than the sunlit aspect S (PPFD: 
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1945.76 ± 125.12 µmol m-2s-1) across the seasons, which indicates negative relationship of Ci/Ca 

with light intensity and stomatal activity (Reindardt and Smith, 2016; Huang et al., 2021). 

Reports suggested that at low light, Ci/Ca exhibit the elevated values and show sharp reduction 

with the rise in the intensity of light till certain threshold, subsequently remains stagnant for any 

rise in intensity of light (Reindardt and Smith, 2016; Huang et al., 2021). 

The present study revealed that seasonality plays a key role in dynamics of plant photosynthetic 

and other physiological traits. Overall, our data indicated that sunlight varied strongly with the 

seasons with more sun light in the summer than in the winter (Fig. 3), and with the difference 

being more pronounced  in S aspect than the N (Fig. 3). All the observed plant eco-physiological 

traits in Q. semecarpifolia varied with the seasons and provided significantly higher magnitudes 

of plant ecophysiological traits (Fig. 4, 5 and 6) in S aspect due to the higher PPFD than the N of 

the same catchment. This indicated that the temperature and moisture are the important 

regulators of seasonal changes in leaf gas exchange; photoperiod and quality of light also 

predominantly modulates leaf activity and a major game changer in the productivity of the plant 

(Bauerle et al., 2012). 

5.2. Diurnal variations of gas exchange in varying light environments 

During all the sampling seasons, and both the studied aspects (S and N) diurnal ecophysiological 

activity was observed maximum at mid-day, particularly at S aspect. High influence of available 

light (Fig. 3) was clearly recorded in the diurnal data of the each observed season. Rise and fall 

of the rate of photosynthesis Amax (Fig. 4) was proportional to the rise and fall of PPFD (Fig. 3), 

along with the similar change in E (Fig. 5) and gsw (Fig. 6), for both the light environments(S 

and N aspects).This clearly indicated that the light played as a key factor in the productivity 
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differences in the different light environments at different time of the day. Both the studied light 

environments S and N aspects were highly different in quality and amount of the available light 

in similar season (Fig. 3), therefore, differed substantially in soil moisture (Table. 2) (Palhares et 

al., 2010; Flexas et al., 2012), air temperature (Taiz & Zeiger 2013), leaf temperature (Fig. 8) 

(Smith and Berry, 2013), humidity and leaf water deficits. Consequently plant varied 

substantially in Amax, E, gsw and leaf water potential Ψ (Fig. 9)  (Pearcy and Sims, 1994; Pearcy 

et al., 1994; Pallardy, 2010; Ribeiro et al., 2018).  

In spring and summer season, the received PPFD was greater (Fig. 3) among all the sampling 

seasons. For well sunlit environment S aspect in spring and summer season, it observed the mid -

day depression in the rate of photosynthesis (Fig. 4),  the E (Fig. 5) and gsw (Fig. 6), subsequent 

to the peak gas exchange at the window when the received PPFD (Fig. 3) was highest of the 

whole day.  This was due to the fact that the primary photochemical reactions of  PSII and PSI 

takes place at a much faster rate than ET (Electron Transport) and leaf’s metabolism, when the 

plants is subjected to receive the excess light energy that of needed for photosynthesis. This leads 

to an energy imbalance between supply and demand for electron transport end products, 

generally results in photo-inhibition (Osmond, 1994; Miralles-Crespo et al., 2011; Bayat et al., 

2018). This photo-inhibition is characterized by decline in quantum efficiency (number of moles, 

carbon-dioxide assimilated per mole photons absorbed) and ultimately decline in Amax (Osmond, 

1987; long et al., 1994;). Raja Harun and Hardwick (1987) also reported the similar decline in 

photosynthesis in cacao leaves when continuously exposed to higher PPFD than full saturating 

photosynthetic intensity. Similar observations have also been reported and  explained by several 

previous studies (Barber and Andersson, 1992; Aro et al., 1993; Vass et al., 2007; Pallardy, 

2010; Gururani et al., 2015; Bayat et al., 2018). This sudden photo-inhibition and decline in gas 
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exchange may also be an early defense response against the oxidative damage due to continuous 

high light intensities (Vranová et al., 2002).  

 With the rise of the day, evaporative demand of the plant increases so the value of E (Fig. 5) 

also rises with the elevation in the value of PPFD (Fig. 3). With the higher values of PPFD, 

Amax(Fig. 4) also grows higher and the stomatal conductivity increases (Fig. 6) to absorb more 

CO2 from the atmosphere. Ci/Ca values (Fig. 7) are inversely related to the stomatal 

conductivity, gsw (Brodribb, 1996). Therefore, high Ci/Ca ratio denoted the lower activity of 

stomata (Reindardt and Smith, 2016; Huang et al., 2021) and with zero approaching gsw (Fig. 6). 

Generally, as intensity of light falls down, the utilization of carbon-dioxide for photosynthesis 

reduces. Similarly, the observed diurnal trends in Ci/Ca (Fig. 7) in the presented study indicated 

the inactivation or lower activity of stomata at early morning and evening with highest values of 

Ci/Ca and near zero values of Amax, while highly active at mid-day with lowest values of Ci/Ca 

and highest Amax (Reindardt and Smith, 2016; Huang et al., 2021). The majority of species open 

and close stomata during day time in response to the modifying abiotic or microclimatic 

environmental factors like light intensity, relative humidity and CO2 concentration; for instance, 

it described above for the observed mid-day decline of gsw along with the Amax and E (Fig. 4, 5 

and 6, respectively), in response to the highly saturated light condition at noon (Fig. 3). The 

study also represented the huge influence of different light environment along the different 

mountain aspect S and N on the Ci/Ca values and stomatal activity as it recorded significantly 

lower values of Ci/Ca in high light environment S than low light environment N, consistently 

throughout the day.   
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5.3. Influence of seasonality and varying light environments on plant water potential 

Presented plant Ψ values were predominantly dependent on the aspect mediated environmental 

variables i.e., temperature, soil moisture, relative humidity and available PAR, which are also the 

key factor  of the seasonal dynamics of environmental condition.  

The observed leaf water potential (Fig. 9) for brown oak were highly varied during the day, 

seasons and aspects . Both, seasonality and varying light conditions (varying aspects) alter 

temperature and relative humidity (Everham III et al., 1996), subsequently modulates the water 

potential and impacts CO2 assimilation and plant growth (Boyer, 1993; Choi at al., 2013; Vesala 

et al., 2017). Both, predawn and mid-day water potential were lowest (indicating high plant 

stress) in winter season (Table. 1; Fig. 9) in both the studied sunlit and low light aspect, S and N 

respectively, resulted in declined Amax. During winter, frozen soil water caused embolism and 

obstructed water uptake. Parallelly, comparatively higher atmospheric temperature enhanced 

evaporation resulting in drier soil and constituted frost draught effect and lowered leaf water 

potential (Frank et al., 1973; Mayer et al., 2006). Winter decline in leaf water potential in the 

Himalayan oak species is also reported by many studies (Garkoti et al., 2000; Singh et  al., 2006; 

Tewari et al., 2018).Most favorable and high water potential (Fig. 9) was noticed during the 

spring season because of the comparably higher availability of soil moisture (Table. 2) due to 

post winter snow melt (Rai et al., 2010). No season recorded water potent lower than -1.51 ± 

0.02, indicated no severe water stress in the plant, also reported by earlier study at the similar 

sites (Tewari et al., 2018). The moist soil due to the melting snow perhaps keeps the Ψ elevated 

above the threshold necessary for the commencement of phenological activities (Tewari, 1998). 

Consequently, spring and summer both represented the growing season in the subalpine area of 

the study site, due to optimum temperature (Fig. 8) and rise in water potential (Fig. 9); as in 
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growing season it reported low water deficit and elevated water potential (Anfodillo et al., 1998). 

Predawn (Ψpd) and midday (Ψmd) water potential were significantly higher for N aspect than 

the S aspect (Fig. 9) across the seasons. This was due to the significantly higher soil moisture 

availability (Table. 2) and lower temperature (Fig. 8), as a result of lower sunlight (Fig. 3) in N 

aspect than the S. Similar impact of varying light environment on water potential has also been 

reported by Young and Smith (1980).  

5.4. Influence of seasonality and varying light environments on Chlorophyll content and its 

relation with the plant’s adaptive strategy to optimize photosynthesis. 

During the measurements Chlorophyll a, b and total chlorophyll (Fig. 10) consistently exhibited 

the higher values in low light environment aspect N than the light saturated and sunlit 

environment S, throughout the studied four seasons, in spite of the 80-90% lower PPFD (Fig. 3) 

and substantially lower leaf temperature (Fig. 8). It indicated the well adaptive modifications 

made by Q. semecarpifolia to maximize the CO2 assimilation rate, even in lower light 

environment. The frosty winters caused frost draught (Frank et al., 1973; Mayer et al., 2006) 

condition for plant, which disrupted photosynthetic system (Zhuang et al., 2019) of the plant 

along with the decline in the chlorophyll a, b and total chlorophyll (chl a+b) content in both the 

studied light environments (Fig. 10). Similar decline in chlorophyll content has also been 

reported in plants due to low temperatures by Zhao et al., (2020). It observed in the present study 

that, in spite of such severe frost damage to the photosynthetic machinery in the winter season at 

subzero temperature, brown oak acclimatized and adjusted the amount of chlorophyll content 

(Fig. 10) substantially higher in N than S; and maintained the plant’s photosynthetic efficiency 

nearly 50% to the peak efficient summer season (Table. 1). 



Discussion 

 

39 
 

 The observed chlorophyll allocation ratio a/b (Fig. 10) in the present study, was significantly 

reduced in N than S light environment consistently, across the seasons. It exhibited an adaptive 

strategy of leaves to varying light environments across varying microclimatic conditions (Li et 

al., 2018b). Shady light environment or understory possesses more defused and reduced blue-

violet light (Ostrom, 2005; Li et al., 2018b). Both the chlorophyll, a and b possess well build 

light absorption potential but their absorption peaks are different. Chlorophyll a absorbs higher 

light in red band, while Chlorophyll b in blue-violet (Lichtenthaler and Buschmann, 2001; Li et 

al., 2018b). Q. semecarpifolia reduced the amount of chl b in leaves, to improve and maintain its 

CO2 assimilation rate (Fig. 4) and productivity in the low light environment N, having lower in 

the amount of incident blue-violet light. 

Chlorophyll a and b harvest the sunlight at different wavelengths and the most essential 

constituents of the primary reaction (which is the first and one of the important part of whole 

photosynthetic reaction). Amount of total leaf chlorophyll (a + b) content and its ratio of 

allocation (chlorophyll a/b) directly influence the photosynthetic efficiency of the plant (Croft et 

al., 2017; Li et al., 2018). Plants adjust the amount and allocation ratio of leaf chlorophyll 

content to rearrange and optimize the photosynthesis by optimizing the absorption of light, 

according to the modifying seasonal and microclimatic environmental (atmospheric temperature, 

humidity and light environment) factors (Zhang et al., 2007; Croft et al., 2015; Li et al., 2018a; 

Li et al., 2018b). As a result, leaf chlorophyll content is highly influenced with seasonality and 

light environment, and a great indicator of the plant’s adaptive adjustments to optimize 

photosynthesis (Yang et al., 2016). The present study indicated the extent of the adaptive 

adjustments made by Q. semecarpifolia to optimize its Amax throughout the studied seasons, by 
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modifying the magnitude of chlorophyll a, b, total chlorophyll and chlorophyll allocation ratio 

a/b. 
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6.CONCLUSION 
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6. Conclusion.    

The studies to model the forest response to environmental alterations comprise of landscape level 

processes, but generally exclude finer scale dynamics, which may be similarly significant to 

ecosystem functions of the forest (Murphy et al., 2020). The present study revealed aspect 

regulated finer scale variations in leaf ecophysiology, evidenced by increased CO2 assimilation 

rate Amax of Q. semecarpifolia, growing under higher light, warmer and drier conditions of S 

aspect relative to the contrasting N facing aspect of the same catchment, in the subalpine forest 

of the central Himalaya. The provided data puts in new information to where and when carbon 

and water fluxes on the landscape are dependent variably on multi-scale inter-linkages between 

biotic, abiotic, and temporal domains. 

In general, the seasonality and aspect driven light environments both posed remarkable changes 

in the leaf ecophysiology (i.e.leaf gas exchange and plant water relation). While, the effect of 

variation in light environment was more pronounced and affected the overall productivity of the 

plants more severely. This marked effect of light environment also affected the leaf physiology 

and productivity diurnally. Consequently, photosynthesis also varied severely throughout the day 

with the diurnal variation of quality and intensity of light. It has also been realized throughout 

the study that photosynthesis and other leaf gas exchange parameters are highly variable and 

highly influenced with microclimatic environmental factors like, air temperature, soil moisture, 

relative humidity, light quality, intensity and duration. Therefore, while predicting the gross 

primary productivity (GPP), it needs to take more site-specific, time specific (diurnal) and season 

specific data to take more accurate and precise account of the forest productivity.  The presented 

study also provides the important clue that brown oak adapts itself and adjusts its physiological 
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traits against several abiotic stresses to maintain its productivity higher. One more important 

finding of the study is that, optimum PPFD was the governing factor to optimize the 

photosynthesis of the plant, but above a saturation point or a certain threshold, it becomes light 

stress and impacts photosynthesis negatively.     

Several traditional methods are available and being used to predict and calculate forest 

productivity in terms of GPP and rate of carbon sequestration. But, with most of those available 

methods, either it may over estimate or under estimate the same, ignoring the highly variable 

nature of photosynthesis along different season, time, climatic and microclimatic zones. By 

estimating such seasonal and diurnal variations in the ecophysiological functions at finer scale, it 

may provide more precise GPP in the changing climate of Himalaya.  
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7.Annexure  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Photo plate 

 

45 
 

 

 

7. Annexure 

Photo plate: 

 

Figure 11 (a). Sampling with LiCor-6800, for leaf gas exchange measurements during winter. (b). Sampling with PMS 600 for 

plant water potential measurements. (c). After sampling time with the team. (d). During measurements of leaf gas exchange 
for spring season.  
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